3.109 \(\int \frac {(A+B \sin (e+f x)) (c-c \sin (e+f x))^{5/2}}{a+a \sin (e+f x)} \, dx\)

Optimal. Leaf size=159 \[ -\frac {32 c^3 (5 A-7 B) \cos (e+f x)}{15 a f \sqrt {c-c \sin (e+f x)}}-\frac {8 c^2 (5 A-7 B) \cos (e+f x) \sqrt {c-c \sin (e+f x)}}{15 a f}-\frac {c (5 A-7 B) \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{5 a f}-\frac {(A-B) \sec (e+f x) (c-c \sin (e+f x))^{7/2}}{a c f} \]

[Out]

-1/5*(5*A-7*B)*c*cos(f*x+e)*(c-c*sin(f*x+e))^(3/2)/a/f-(A-B)*sec(f*x+e)*(c-c*sin(f*x+e))^(7/2)/a/c/f-32/15*(5*
A-7*B)*c^3*cos(f*x+e)/a/f/(c-c*sin(f*x+e))^(1/2)-8/15*(5*A-7*B)*c^2*cos(f*x+e)*(c-c*sin(f*x+e))^(1/2)/a/f

________________________________________________________________________________________

Rubi [A]  time = 0.35, antiderivative size = 159, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {2967, 2855, 2647, 2646} \[ -\frac {8 c^2 (5 A-7 B) \cos (e+f x) \sqrt {c-c \sin (e+f x)}}{15 a f}-\frac {32 c^3 (5 A-7 B) \cos (e+f x)}{15 a f \sqrt {c-c \sin (e+f x)}}-\frac {c (5 A-7 B) \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{5 a f}-\frac {(A-B) \sec (e+f x) (c-c \sin (e+f x))^{7/2}}{a c f} \]

Antiderivative was successfully verified.

[In]

Int[((A + B*Sin[e + f*x])*(c - c*Sin[e + f*x])^(5/2))/(a + a*Sin[e + f*x]),x]

[Out]

(-32*(5*A - 7*B)*c^3*Cos[e + f*x])/(15*a*f*Sqrt[c - c*Sin[e + f*x]]) - (8*(5*A - 7*B)*c^2*Cos[e + f*x]*Sqrt[c
- c*Sin[e + f*x]])/(15*a*f) - ((5*A - 7*B)*c*Cos[e + f*x]*(c - c*Sin[e + f*x])^(3/2))/(5*a*f) - ((A - B)*Sec[e
 + f*x]*(c - c*Sin[e + f*x])^(7/2))/(a*c*f)

Rule 2646

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(-2*b*Cos[c + d*x])/(d*Sqrt[a + b*Sin[c + d*
x]]), x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2647

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(a + b*Sin[c + d*x])^(n -
1))/(d*n), x] + Dist[(a*(2*n - 1))/n, Int[(a + b*Sin[c + d*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d}, x] && Eq
Q[a^2 - b^2, 0] && IGtQ[n - 1/2, 0]

Rule 2855

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.)
 + (f_.)*(x_)]), x_Symbol] :> -Simp[((b*c + a*d)*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^m)/(a*f*g*(p +
1)), x] + Dist[(b*(a*d*m + b*c*(m + p + 1)))/(a*g^2*(p + 1)), Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x]
)^(m - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, -1] && LtQ[p, -1]

Rule 2967

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[a^m*c^m, Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m)*(A + B
*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && I
ntegerQ[m] &&  !(IntegerQ[n] && ((LtQ[m, 0] && GtQ[n, 0]) || LtQ[0, n, m] || LtQ[m, n, 0]))

Rubi steps

\begin {align*} \int \frac {(A+B \sin (e+f x)) (c-c \sin (e+f x))^{5/2}}{a+a \sin (e+f x)} \, dx &=\frac {\int \sec ^2(e+f x) (A+B \sin (e+f x)) (c-c \sin (e+f x))^{7/2} \, dx}{a c}\\ &=-\frac {(A-B) \sec (e+f x) (c-c \sin (e+f x))^{7/2}}{a c f}-\frac {(5 A-7 B) \int (c-c \sin (e+f x))^{5/2} \, dx}{2 a}\\ &=-\frac {(5 A-7 B) c \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{5 a f}-\frac {(A-B) \sec (e+f x) (c-c \sin (e+f x))^{7/2}}{a c f}-\frac {(4 (5 A-7 B) c) \int (c-c \sin (e+f x))^{3/2} \, dx}{5 a}\\ &=-\frac {8 (5 A-7 B) c^2 \cos (e+f x) \sqrt {c-c \sin (e+f x)}}{15 a f}-\frac {(5 A-7 B) c \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{5 a f}-\frac {(A-B) \sec (e+f x) (c-c \sin (e+f x))^{7/2}}{a c f}-\frac {\left (16 (5 A-7 B) c^2\right ) \int \sqrt {c-c \sin (e+f x)} \, dx}{15 a}\\ &=-\frac {32 (5 A-7 B) c^3 \cos (e+f x)}{15 a f \sqrt {c-c \sin (e+f x)}}-\frac {8 (5 A-7 B) c^2 \cos (e+f x) \sqrt {c-c \sin (e+f x)}}{15 a f}-\frac {(5 A-7 B) c \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{5 a f}-\frac {(A-B) \sec (e+f x) (c-c \sin (e+f x))^{7/2}}{a c f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.76, size = 134, normalized size = 0.84 \[ -\frac {c^2 \sqrt {c-c \sin (e+f x)} \left (\sin \left (\frac {1}{2} (e+f x)\right )+\cos \left (\frac {1}{2} (e+f x)\right )\right ) (25 (8 A-13 B) \sin (e+f x)+2 (5 A-16 B) \cos (2 (e+f x))+450 A+3 B \sin (3 (e+f x))-600 B)}{30 a f (\sin (e+f x)+1) \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[((A + B*Sin[e + f*x])*(c - c*Sin[e + f*x])^(5/2))/(a + a*Sin[e + f*x]),x]

[Out]

-1/30*(c^2*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*Sqrt[c - c*Sin[e + f*x]]*(450*A - 600*B + 2*(5*A - 16*B)*Cos[
2*(e + f*x)] + 25*(8*A - 13*B)*Sin[e + f*x] + 3*B*Sin[3*(e + f*x)]))/(a*f*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2]
)*(1 + Sin[e + f*x]))

________________________________________________________________________________________

fricas [A]  time = 0.43, size = 95, normalized size = 0.60 \[ -\frac {2 \, {\left ({\left (5 \, A - 16 \, B\right )} c^{2} \cos \left (f x + e\right )^{2} + 2 \, {\left (55 \, A - 71 \, B\right )} c^{2} + {\left (3 \, B c^{2} \cos \left (f x + e\right )^{2} + 2 \, {\left (25 \, A - 41 \, B\right )} c^{2}\right )} \sin \left (f x + e\right )\right )} \sqrt {-c \sin \left (f x + e\right ) + c}}{15 \, a f \cos \left (f x + e\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(5/2)/(a+a*sin(f*x+e)),x, algorithm="fricas")

[Out]

-2/15*((5*A - 16*B)*c^2*cos(f*x + e)^2 + 2*(55*A - 71*B)*c^2 + (3*B*c^2*cos(f*x + e)^2 + 2*(25*A - 41*B)*c^2)*
sin(f*x + e))*sqrt(-c*sin(f*x + e) + c)/(a*f*cos(f*x + e))

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(5/2)/(a+a*sin(f*x+e)),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [A]  time = 1.10, size = 95, normalized size = 0.60 \[ -\frac {2 c^{3} \left (\sin \left (f x +e \right )-1\right ) \left (-3 B \left (\cos ^{2}\left (f x +e \right )\right ) \sin \left (f x +e \right )+\left (-50 A +82 B \right ) \sin \left (f x +e \right )+\left (-5 A +16 B \right ) \left (\cos ^{2}\left (f x +e \right )\right )-110 A +142 B \right )}{15 a \cos \left (f x +e \right ) \sqrt {c -c \sin \left (f x +e \right )}\, f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(5/2)/(a+a*sin(f*x+e)),x)

[Out]

-2/15*c^3/a*(sin(f*x+e)-1)*(-3*B*cos(f*x+e)^2*sin(f*x+e)+(-50*A+82*B)*sin(f*x+e)+(-5*A+16*B)*cos(f*x+e)^2-110*
A+142*B)/cos(f*x+e)/(c-c*sin(f*x+e))^(1/2)/f

________________________________________________________________________________________

maxima [B]  time = 0.46, size = 386, normalized size = 2.43 \[ \frac {2 \, {\left (\frac {5 \, {\left (23 \, c^{\frac {5}{2}} + \frac {20 \, c^{\frac {5}{2}} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {65 \, c^{\frac {5}{2}} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {40 \, c^{\frac {5}{2}} \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}} + \frac {65 \, c^{\frac {5}{2}} \sin \left (f x + e\right )^{4}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{4}} + \frac {20 \, c^{\frac {5}{2}} \sin \left (f x + e\right )^{5}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{5}} + \frac {23 \, c^{\frac {5}{2}} \sin \left (f x + e\right )^{6}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{6}}\right )} A}{{\left (a + \frac {a \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1}\right )} {\left (\frac {\sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + 1\right )}^{\frac {5}{2}}} - \frac {2 \, {\left (79 \, c^{\frac {5}{2}} + \frac {79 \, c^{\frac {5}{2}} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {205 \, c^{\frac {5}{2}} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {170 \, c^{\frac {5}{2}} \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}} + \frac {205 \, c^{\frac {5}{2}} \sin \left (f x + e\right )^{4}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{4}} + \frac {79 \, c^{\frac {5}{2}} \sin \left (f x + e\right )^{5}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{5}} + \frac {79 \, c^{\frac {5}{2}} \sin \left (f x + e\right )^{6}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{6}}\right )} B}{{\left (a + \frac {a \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1}\right )} {\left (\frac {\sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + 1\right )}^{\frac {5}{2}}}\right )}}{15 \, f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(5/2)/(a+a*sin(f*x+e)),x, algorithm="maxima")

[Out]

2/15*(5*(23*c^(5/2) + 20*c^(5/2)*sin(f*x + e)/(cos(f*x + e) + 1) + 65*c^(5/2)*sin(f*x + e)^2/(cos(f*x + e) + 1
)^2 + 40*c^(5/2)*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 65*c^(5/2)*sin(f*x + e)^4/(cos(f*x + e) + 1)^4 + 20*c^(
5/2)*sin(f*x + e)^5/(cos(f*x + e) + 1)^5 + 23*c^(5/2)*sin(f*x + e)^6/(cos(f*x + e) + 1)^6)*A/((a + a*sin(f*x +
 e)/(cos(f*x + e) + 1))*(sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 1)^(5/2)) - 2*(79*c^(5/2) + 79*c^(5/2)*sin(f*x
+ e)/(cos(f*x + e) + 1) + 205*c^(5/2)*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 170*c^(5/2)*sin(f*x + e)^3/(cos(f*
x + e) + 1)^3 + 205*c^(5/2)*sin(f*x + e)^4/(cos(f*x + e) + 1)^4 + 79*c^(5/2)*sin(f*x + e)^5/(cos(f*x + e) + 1)
^5 + 79*c^(5/2)*sin(f*x + e)^6/(cos(f*x + e) + 1)^6)*B/((a + a*sin(f*x + e)/(cos(f*x + e) + 1))*(sin(f*x + e)^
2/(cos(f*x + e) + 1)^2 + 1)^(5/2)))/f

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\left (A+B\,\sin \left (e+f\,x\right )\right )\,{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{5/2}}{a+a\,\sin \left (e+f\,x\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B*sin(e + f*x))*(c - c*sin(e + f*x))^(5/2))/(a + a*sin(e + f*x)),x)

[Out]

int(((A + B*sin(e + f*x))*(c - c*sin(e + f*x))^(5/2))/(a + a*sin(e + f*x)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sin(f*x+e))*(c-c*sin(f*x+e))**(5/2)/(a+a*sin(f*x+e)),x)

[Out]

Timed out

________________________________________________________________________________________